

## Maximizing Data Quality for In-Service Tank Inspections – Calibrations to Confirmations

Brian Kinsey Chief Growth Officer bkinsey@squarerobots.com

**Advanced Robotics** 

State of the Art Sensors

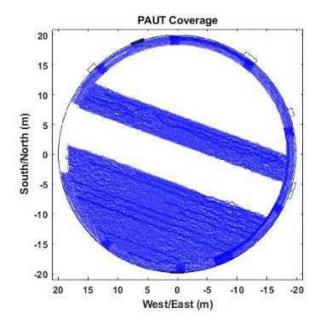
High Density Data Acquisition

## **Tank Inspection -** The Traditional Approach

- □ PROJECT LASTS WEEKS OR MONTHS
- □ DRAIN, VENT, CLEAN, WASTE DISPOSAL
- ☐ INSPECT WITH MAGNETIC FLUX LEAKAGE (MFL)
- □ VALIDATE WITH SPOT ULTRASONIC (UT)
- ☐ REPAIR "SINCE IT IS OUT OF SERVICE"












### Square Robot's Tank Inspection Capability





- Critical 130' Diameter Demineralized Water Tank Tank flowing 5000 gpm in/out during inspection 5 days inspection
  - square ROBOT

#### Robotics Enable Safe, Informed Efficiency

#### **Environmental, Social, Governance**

- Zero confined space entry
- Reduced work at heights
- \*Carbon Equivalent releases contained per average tank:
  - Diesel > 5 Tons
  - o Gasoline > 20 Tons

\*Source - Third Party Verified for 100' diameter tank

#### **Capital Efficiency**

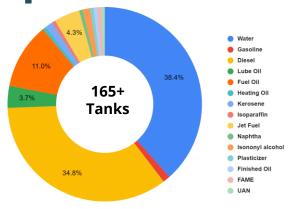
- \*\$300,000 +\$2M savings per average outof-service tank operation
- Proactive risk vs time based inspections

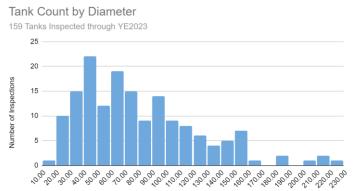


- Hi confidence / hi resolution data
- Big data feed/ advanced processing
  - API 653/ EEMUA 159
  - o RBI / EVA / Digital Platforms






#### **Operational Efficiency**


- In- Service Inspection
- Tank utilization
- Extended out of service dates
- Extended tank life
- Predictive repair & maintenance





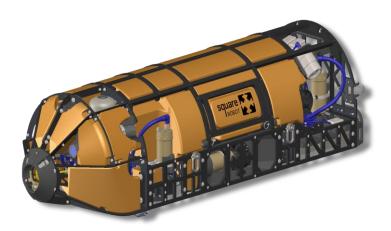
#### **Square Robot Inspection Track Record**





Tank Diameter (Feet)

| 40 — |                      |          |           |       |           |      |          |
|------|----------------------|----------|-----------|-------|-----------|------|----------|
| 20 — |                      |          |           |       |           |      |          |
| 0 —  | Refining             | Chemical | Midstream | Power | Renewable | Rail | Military |
|      | # of Tanks by Market |          |           |       |           |      |          |

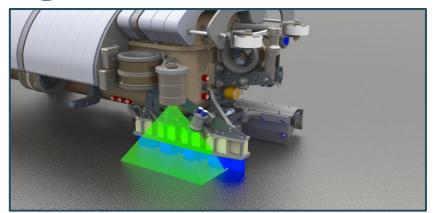

| KPI                                       | Count                        |  |  |
|-------------------------------------------|------------------------------|--|--|
| API 653 Tanks Inspected                   | >165                         |  |  |
| PAUT Bottom Coverage (includes obstacles) | 60% average (95% max)        |  |  |
| Confined Space Labor Hours Saved          | 100,110 hours (630/tank avg) |  |  |
| CO2 Emissions Equivalent Contained        | 825,600 lbs(7,800/tank avg)  |  |  |
| Tank Utilization                          | 95% - 99%                    |  |  |
| Cost Savings (assume \$300k x 165 tanks)  | \$49 million                 |  |  |



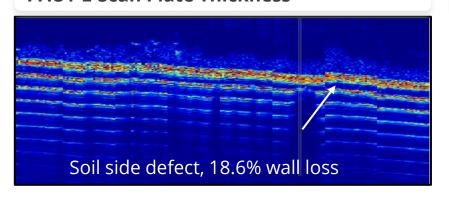
Tank Inspections by Industry



### Square Robot's Inspection Capability




SR-3
Autonomous
Submersible
Tank Inspection Robot


**Applications** Side Shell or Roof Launch Launch/Recovery Method **Fiber Optic Tethered** Communications Fixed, External or Internal Floating Roof Tank Type **Low/High Flashpoint Products Product Compatibility PAUT Bottom/Coating Thickness** Active **Active Bottom Settlement Under Load** Visuals of Bottom, Shell, Internals Active **PAUT Internal Shell Inspection Active PAUT Fiberglass Liner Bottoms Active Internal Roof Seal Inspection In Development Sediment Thickness Mapping** In Development

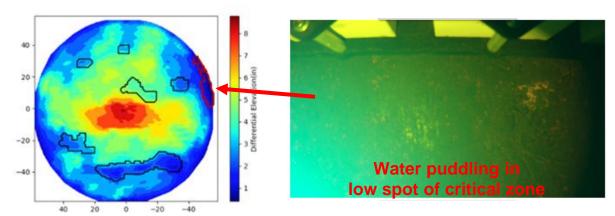


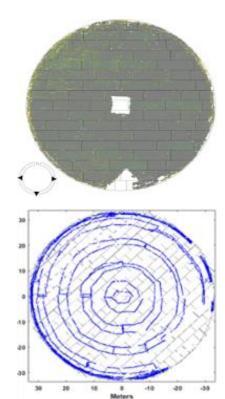
## High Resolution Sensors and Navigation



**PAUT L-Scan Plate Thickness** 




**Critical Zone and Water Puddling** 





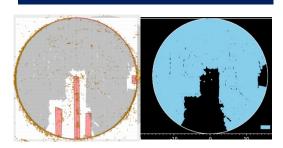

## API, EEMUA, and Risk Based Inspections

- ☐ Tank Bottom Thickness using Phased Array UT
  - □ Differentiate Product and Soil Side
  - □ Variety of Epoxy and Fiberglass Liners
- Tank Shell Thickness using Phased Array UT
- ☐ Internal Visual using 2 onboard video cameras
- ☐ Tank Bottom Settlement *under loaded conditions*





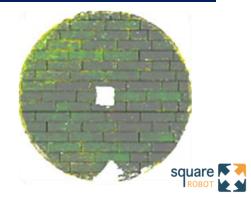




#### **SR-3 Robot** Roof Launch Approach

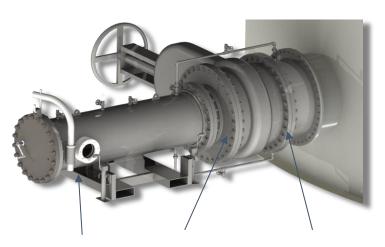







4. Inspection




5. Recover



6. Report



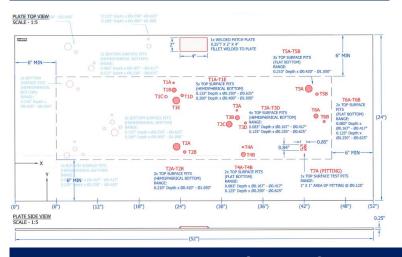
#### **SR-3 Robot** Side Launcher System



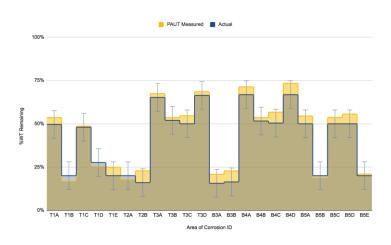
Vehicle 24" Manway Chamber Gate Adapter Valve






## **Maximizing** Data Quality

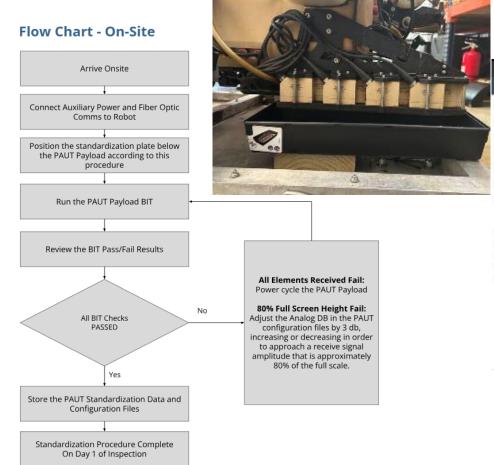


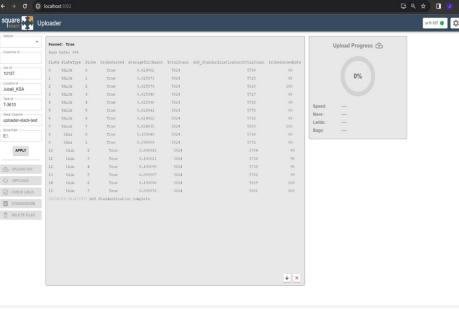

#### **Phased Array UT Validation**



#### **API 653 Test Plates**

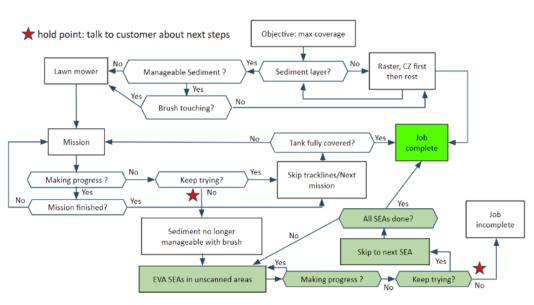


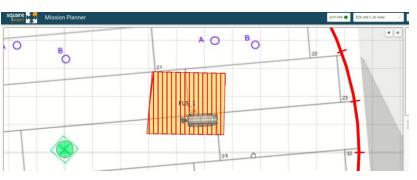

# Allowable Measurement Range Shown

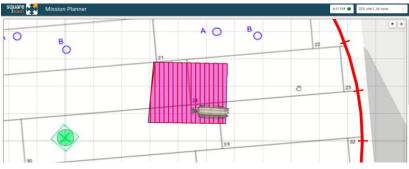



Phased Array UT payload
Meets API 653 - Annex G Requirements

#### **PAUT** Calibration/ Function Testing



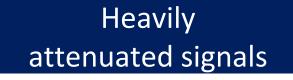




#### **Operations Methodology - Onsite**

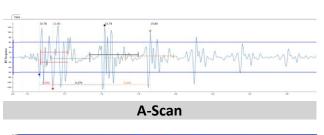






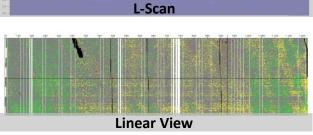


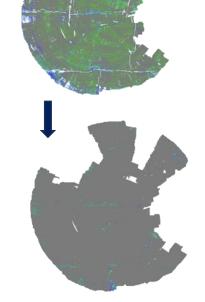

## **Data** Quality and Processing




# Heavily attenuated signals
















#### **PAUT Data Confirmation**



## Visual Observations



IN-SERVICE
VIDEO/CAMERA FOOTAGE

# Magnetic Flux Leakage



OUT-OF-SERVICE MFL SCANNING

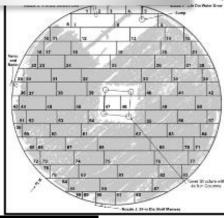
#### Saturated Low Frequency Eddy Current



OUT-OF-SERVICE SLOWFEC SCANNING

**Continuous Improvement Feedback Loop** 

#### Case Study: 114' Diameter Diesel Tank


#### **In-Service Robotic Inspection**

- Tank built 1978 with repairs in 2003
- Inspected while fueling train locomotives every 4 hours
- Water puddling
- Detected unknown double bottom

**Savings: In-Service Robotic vs Traditional Inspection** 

- ~\$1.2 million USD vs Out of Service Inspection
- + ~40 days out of service time/temp storage
- + 6.6 tons of CO2 emissions contained
- + 670 confined space labor hours
- + Extended API 653 compliance 18 years with minor external repairs

- Inspection Time: 3 DAYS
- UT Tank Bottom Coverage: 81%
- UT Plate Coverage: 90/94 plates
  - Confidence Level: High

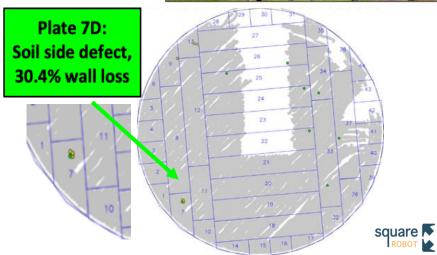






Case Study: 92' Diameter Diesel Tank

#### **In-Service Robotic Inspection**


- Similar tanks nearby suggested repairs required
- Obtain API 653 compliant report
- Robotic inspection in 2022 to plan for 2025 repairs

#### **Savings: In-Service Robotic vs Traditional Inspection**

- > **\$400k** vs Out of Service Inspection cost
- + 27 days of out of service time
- + 5 tons of CO2 emissions contained
- + **550** confined space labor hours
- + Extended API 653 compliance > 20 years

- Inspection Time: 3 DAYS
  - UT Tank Bottom Coverage: 78%
- UT Plate Coverage: 29/31 plates
- Confidence Level: High





## **Questions?**



Brian Kinsey Chief Growth Officer bkinsey@squarerobots.com





## Maximizing Data Quality for In-Service Tank Inspections – Calibrations to Confirmations

Brian Kinsey Chief Growth Officer bkinsey@squarerobots.com

**Advanced Robotics** 

State of the Art Sensors

High Density Data Acquisition