PRESENTERS

Internal Robotic API 653 Tank

Inspections and Capabilities

for Midstream Facilities

Γhursday, August 29th Γime slots: 9 am CDT | 1 pm CDT

Ross JarvisDir. of Business Development

Madison Hart
Business Development Manager

Webinar Agenda

- **□** INTRODUCTIONS & WHERE IT ALL BEGAN
- MIDSTREAM MARKET & TANK CANDIDACY
- ☐ THE SQUARE PROCESS
- CASE STUDIES
- **□** LATEST DEVELOPMENTS AT SQUARE

2024

Tanks to Date

2019

Commercial Tank Inspection

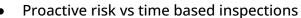
2018

Approved

2016

Founded

Midstream Market - How Square Adds Value


Safety & Environmental

- Zero confined space entry
- *Carbon Equivalent releases contained per average tank:
 - Diesel > 5 Tons
 - Gasoline > 20 Tons

*Source - Third Party Verified for 100' diameter tank

Capital Efficiency

- *\$300,000 +\$2M savings per average out-of-service tank operation

Big Data Solutions

- Hi confidence / hi resolution data
- Big data feed/ advanced processing
 - API 653/ FFMUA 159
 - RBI / EVA / Digital Platforms
 - Similar Service

Operational Efficiency

- In- Service Inspection
- Tank utilization
- Extended out of service dates
- Extended tank life
- Predictive repair & maintenance

*Source - Solomon Associates 2018 Fuels Study

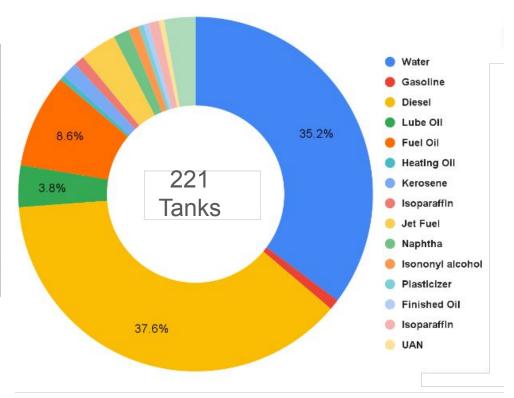
Tank Inspection - The Traditional Approach

- PROJECT LASTS WEEKS OR MONTHS
- ☐ DRAIN, VENT, CLEAN, WASTE DISPOSAL
- INSPECT WITH MFL or SLOFEC
- **□** VALIDATE WITH SPOT ULTRASONIC (UT)

Square Robot Inspection Capability

SR-3
Autonomous
Submersible
Tank Inspection Robot

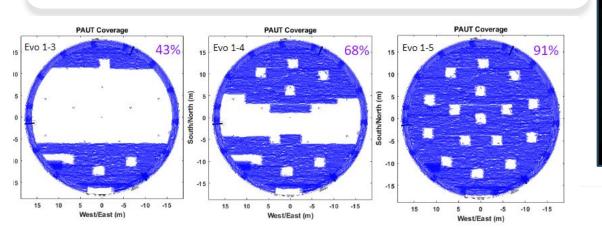
Launch/Recovery Method Communications **Tank Type Product Compatibility PAUT Bottom/Coating Thickness Bottom Settlement Under Load** Visuals of Bottom, Shell, Internals **PAUT Internal Shell Inspection PAUT Fiberglass Liner Bottoms Internal Roof Seal Inspection**

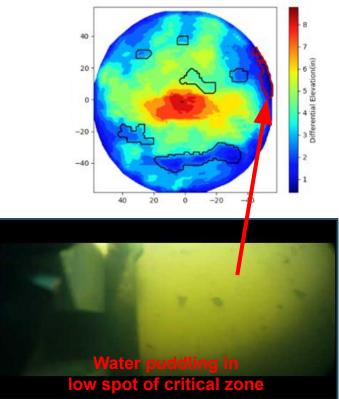

Sediment Thickness Mapping

Applications Side Shell or Roof Launch **Fiber Optic Tethered** Fixed, External or Internal Floating Roof **Low/High Flashpoint Products** Active **Active** Active Active Active In Development In Development

Square Robot Inspection Track Record

KPI	Count		
API 653 Tanks Inspected	221		
PAUT Bottom Coverage (includes obstacles)	70% average, (98% max)		
Confined Space Labor Hours Saved	138,000 hours		
CO2 Emissions Equivalent Contained	1.6M lbs		
Cost Savings	\$64 million		

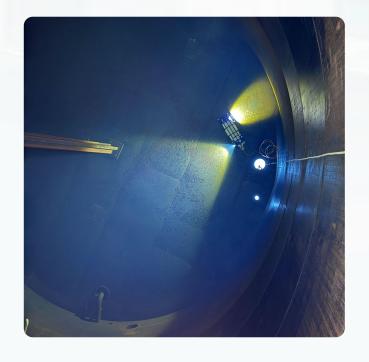

API 653 Inspection and Settlement Survey



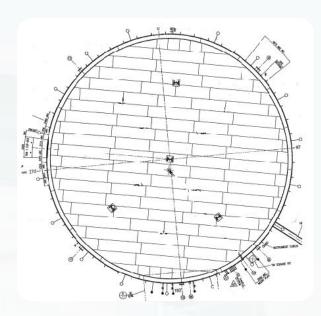
Internal tank inspection using SR-1 or SR-3

- □ Tank Bottom Thickness using PAUT
- **□** Differentiate Product and Soil Side Corrosion
- ☐ Internal Visual using 2 onboard video cameras
- Tank Bottom Settlement under loaded conditions
- Tank Shell Thickness using PAUT

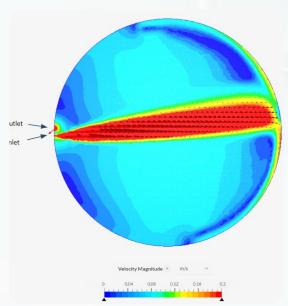
External tank inspection simultaneously by certified inspector

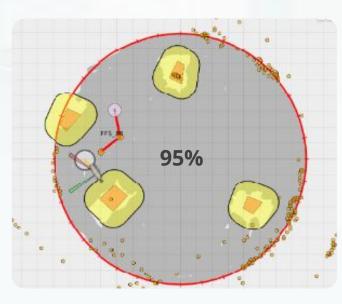


Tank Candidacy - Picking The Right Tank


- ☐ Minimum 24" manway size
- Product compatibility

- ☐ Temperature (< 104F/40C)
- ☐ Product height (< 15 FT)
- □ Viscosity (< 45 cSt)
- Minimal sediment/sludge profile
- ☐ Good Actors vs Bad Actors




The Square Process - Pre-Job Planning

Tank Drawing Package Review

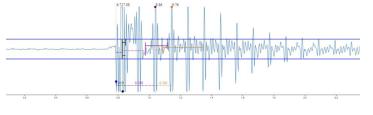
Flow Velocity Analysis (if needed)

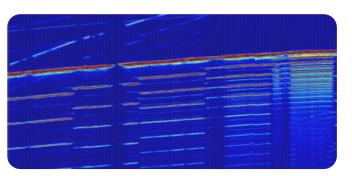
Max Accessible Bottom Area Estimate

Mobilization Options

Operations Control Center,
7KW Diesel Power Generator

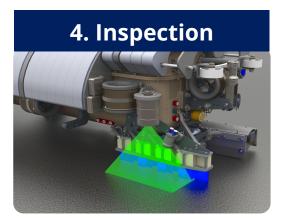
Air Freight
Robot(s), Support Gear, Batteries


Small Logistics Footprint Improves Efficiency and Lowers Logistics Cost

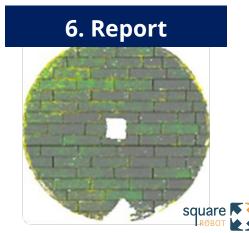


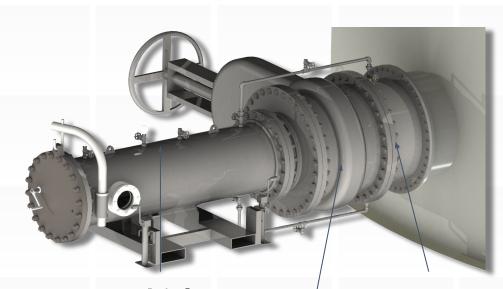
PAUT Calibration/ Function Testing

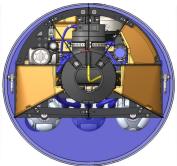
- Standardization Block is 15-inches (381-mm) in length and 3.5-inches (88.9-mm) in width encompassing all the transducers.
- Stainless steel block and A36 Steel used for the functional test.
- 5 steps measuring with each thickness having a +0.004/-0.004inch tolerance.
 - 1. 0.100-inch / 2.54-mm
 - 2. 0.200-inch / 5.08-mm
 - 3. 0.300-inch / 7.62-mm
 - 4. 0.400-inch / 10.16-mm
 - 5. 0.500-inch / 12.70-mm



The Square Process Roof Launch



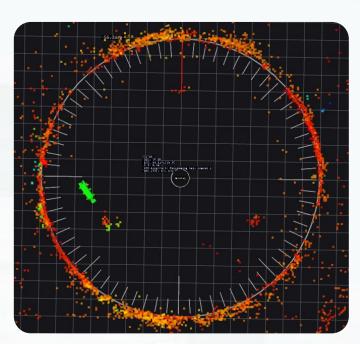


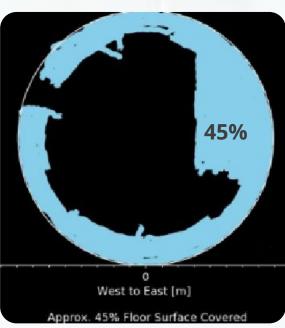


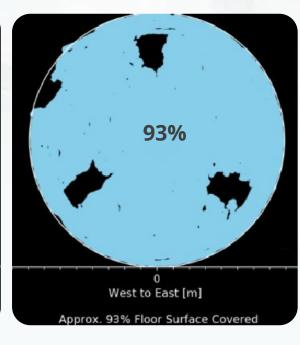
SR-3 Side Launcher System

Vehicle Chamber 24" Gate Valve Manway Adapter

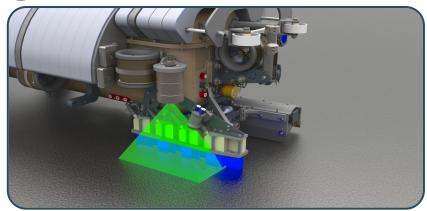
Min. ID 23.25"


SR-3 Shell Launch Approach

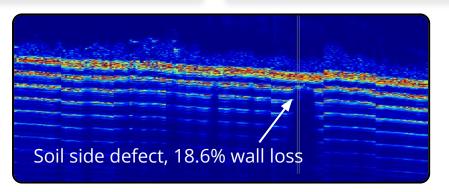



Squared Process - Job Execution

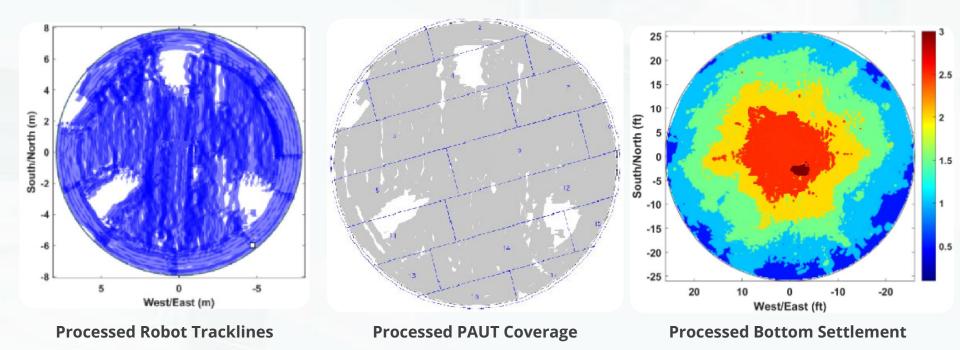
Initial Internal Layout Verification


Estimated Coverage Update

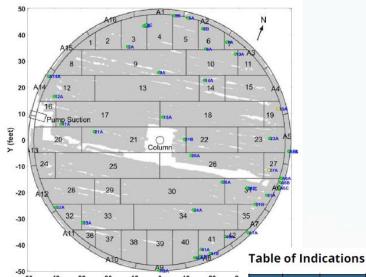
Final Estimated Coverage Update


High Resolution Sensors and Navigation

PAUT A, B, C-Scan for Plate Thickness



Access to Critical Zone


The Square Process - Post Job Data Processing

The Square Process - Final Report Delivery

Bottom Findings Layout

X (feet) Figure 8 - Findings Map

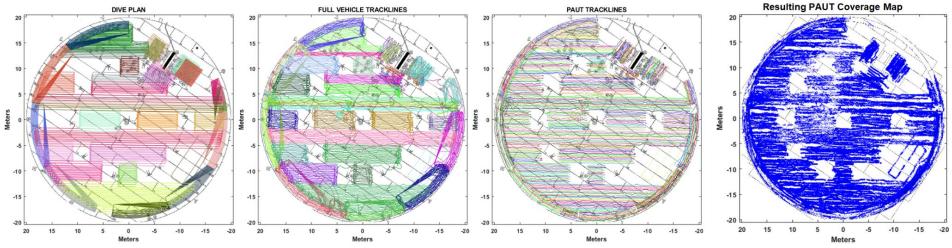
Inspection Intervals

External Inspection Intervals					
External Visual Inspection	January 2027				
Shell Ultrasonic Thickness Survey	January 2037				
	Regular Plates				
Internal Inspection Interval with Coat	ing per API 653				
Next Out-of-Service Interval	January 2042				
Bottom Repair Threshold	0.272-inch (27% wall loss)				
Internal Inspection Interval without C	oating Per API 653				
Next Out-of-Service Interval	January 2042				
Bottom Repair Threshold	0.315-inch (16% wall loss)				

Location ID	Wall Thickness (in.)	Measure Wall Thickness (in.)	Deviation from Nominal Wall	X (in.)	Y (in.)	Corrosion Type	Critical Zone	Ref. Corner
3	0.375	0.347	7.5	30	13	SS		BL
3	0.375	0.347	7.5	104	108	SS		BL
3	0.375	0.343	8.5	115	113	SS		BL
-	0.075	0.005		70		cc		

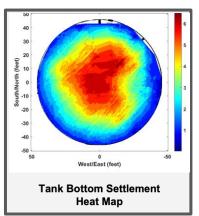
Visual Inspection Images

© 2024 Square Robot, Inc. All Rights Reserved. Business Proprietary


Case Study: 131' Diameter Diesel Tank

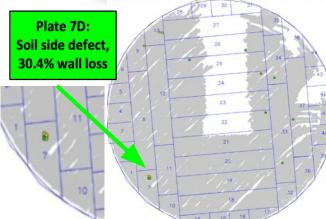
Risk Based Inspection:

- Prioritize critical zone
- Maximum floor coverage within allotted 5 day inspection time time
- Extended out of service date 15-20 years


Case Study: 92' Diameter Diesel Tank

Similar tanks nearby suggest internal tank bottom repairs required

- Proactively manage risk ahead of 2025 API inspection date
- Obtain API 653 compliant report
- Gain clear understanding of expected repairs
- Budget for repairs and project timeline in 2025


Savings: In-Service Robotic vs Traditional Inspection

- >\$400k temporary storage, prep, inspection cost
- + 27 days of out of service time
- + Contained > 5 tons of CO2 emissions
- + Eliminated 550 confined space labor hours
- + Higher density/Higher confidence data
- + Extended API 653 compliance > 20 years

- Inspection Time: 3 DAYS
- UT Tank Bottom Coverage: 78%
- UT Plate Coverage: 29/31 plates
 - Confidence Level: High

New Capabilities

Advanced Robotics

State of the Art Sensors

High Density Data Acquisition

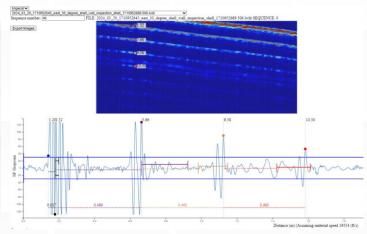
Square Robot Training and Service Center

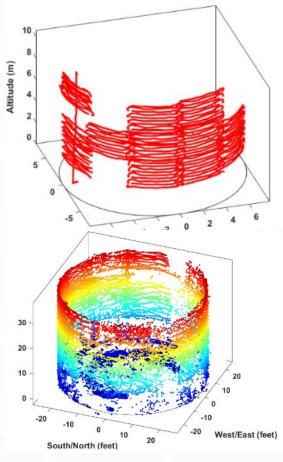
- Houston Training and Service Center
 - Training 10 week "Boot Camp" completed
 - Square Robot and Partner Training
 - Robot repair and maintenance
- 25' Diameter Tank
 - Training
 - New Product Development
 - Customer Demonstrations and Testing
 - Probability of Detection Studies

Square Robot's Bocker Lift System

Square Robot offers further safety and efficiency to its inspection robot roof launch and recovery process using the Böcker incline lift system.

- Eliminates overhead lifts
- Reduced rigging and complex lift plans
- Reduced cost
- Eliminates ground prep typical for cranes
- Self-contained, small footprint
- Maneuverability on site
- Enhanced mobility and road versatility





SR-3 Internal Shell PAUT Inspection

- Improved internal shell coverage and access versus external point UT
- Insulated tanks
- Reorient PAUT to face shell
- High quality data and coverage results
- Next step to internal seal inspection with camera orient camera toward roof seal

Q & A

Advanced Robotics

State of the Art Sensors

High Density Data Acquisition